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SECTIONI

INTRODUCTION

This summaryreport conveys the results of a seven-month contract
on The Investigation of the Orbital Tracking of a Geostationary Satellite.
Onepurpose of the study is to determine the effects of uncertainties in
observation quantities on the orbit parameters as they are propagated in the
orbit correction technique. This determination considers various tracking
concepts, accuracies, frequencies, and tracking deviations. A second pur-
pose is to determine the effect of bias errors on the orbit determination
method and, depending on the magnitude of the effect, ascertain schemesfor
treating these biases.

The report is presented in two volumes of which this, Volume I,
concerns itself with the theory and methods used in the study. Volume II
presents the numerical and graphical results derived from the investigation.

In Volume I will be found a discussion of the statistical tech-
niques used in this study. The method of least squares is the mathematical
tool employed in the analysis under the assumption that the uncertainties
in the observations are randomly distributed. The effect of noise correla-
tion between observations of the sametype is established in order to define
an upper bound on sampling frequency in the investigation.

The orbit is defined by the U, V set of parameters which circum-
vent the usual singularities associated with zero inclination and zero eccen-
tricity. Analytical differential expressions between these parameters and
the observed quantities of range, range rate, right ascension and declination
are developed for use in the least squares error analysis, which produces
the statistical variances in the orbital elements. These variances are com-
bined to form the variances in the following mission parameters which were
established in the initial stages of the study:
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2 °(i) Time to drift out of a topocentric cone

(2) North-south excursion

(3) East-west excursion

(4) East-west bias.

The final sections of Volume I are concerned with the subject

of bias errors. Here the biases in station location, uncertainties in

gravitational and celestial constants, uncertainty in the velocity of

propagation, and atmospheric refraction correction uncertainties are enu-

merated. Analytic expressions are developed relating these bias errors

to the observed quantities, and in instances where possible they are rela_d

directly to uncertainties in specific orbit parameters. Matrix methods are

developed for the treatment of biases providing a technique for extending

the matrix of partials to include the bias error partials. A similar matrix

development is applied to the differential correction process, thereby pro-

viding a method of detecting the magnitude of a bias and subsequently cor-

recting it.
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SECTION2

METHODOFERRORANALYSIS

This study deals with the relationships between tracking measure-
ments and the quality of the orbit derived therefrom. Considered here is
the problem of predicting the position of a geostationary satellite based
on information from instrumentation of a given reliability. Errors in the
prediction are then comparedwith someacceptable limit, where errors in
the measurementsare assumedto be of a randomnature and statistically
correlated.

2.1 LEASTSQUARESERRORANALYSIS

Any observation 0. by an earth-fixed observer may be expressed
in terms of six parameters dr "elements" describing the orbit and the time.
First order differential expressions relating observation and parameters
follow from the leading term in a Taylor expansion, i.e.

E 8°i
_ A0. = AX , (2.1)

_ l j _ j
J

_J

where the Xj are the six orbit parameters. Where there are m observations
available to define the six parameters, a set of m differential expressions

may be written; in matrix form, this set is

where (

and the

(A0i) = ( _/iJ ) ( A Xj) , (2.2)

(7_2_ is an m x 6 matrix. The (AXj) is a six component vector,
i) is an m component vector.
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If there are more observed quantities 0. than parameters Xj that
is, when m > l '6, the system is overdetermined and the equations may be solved

in the sense of least squares. The solution takes the form

)T
(_Xj) = [( _/ij)T ( _/ij ) ] -I ( _/ij ( A 0i ) , (2.3)

where the -i and T superscripts denote inverse matrix and transpose matrix

respectively. The bracketed quantity in (2.3) is the so called least square
matrix N

N = [(_ij) T (Vij) ] (2.4)

Where more than one type of tracking data is employed, or where the statis-

tical variances of the 0.'s are not the same, the least square matrix N
i

must be constructed according to

T

N =[( _/ij ) (Pip) (_/ij) ] (2.5)

where (Pip) is the diagonal weight matrix, defined as

i
m

Pip 02 , i =p

0.
I

P. =0 , i _p
ip

(2.6)

o is the standard deviation of the observation 0
0. i"
I

The inverse of the least square matrix N, called the variance

covariance matrix, has the important property that the diagonal terms are

the variances in the _X_ per unit observation error, assuming true Gaussian
J

error distribution and complete independence between measurements. The unit

observation error for each data type is introduced through the (Pi_) matrix.
Thus the square root of the diagonal elements of the N- matrix is _nterpreted

as the standard deviation in the orbit parameters arising from the selected

observation pattern.
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2.2 MODEL OF OBSERVATIONS NOISE CORRELATION

Once enough observations are obtained to define the geometry

reasonably well, the variance in the orbit parameters decreases in manner

inversely proportional to the total number of observations, when additional

observations are taken over the same arc of the orbit. Or, in other terms,

the orbit parameter errors decrease with the square root of the instrumenta-

tion sampling frequency.

There are, nevertheless, two regions in the sampling rate band

where the square root law breaks down. The first is at very low frequency,

where the total number of observations over the orbit arc are insufficient

to define the geometry in detail and, as a consequence, the error in the

orbit parameters decreases more rapidly than the square root law, as more

observations are taken.

The second region is located where the sampling rate is signifi-

cantly greater than the cutoff frequency of the observation noise and the

correlation between successive data points is no longer negligible. When

this happens, the gain in information obtained by increasing the sampling

rate is sharply reduced. In this region the error in the orbit parameters

decreases at first slower than the square root of the sampling rate and

then settles at a fairly constant value.

The following model of observation noise is assumed:

(a) Statistical correlation exists between observations

of the same type (range, range rate, angles) but

measurements of different type are uncorrelated;

(b) The autocorrelation function of the observation

noise for each type of measurement is a simple

exponential:

-anT
_(n T) = e (2.7)

where T is the sampling period.

These assumptions may seem restrictive but they permit obtaining

a good insight into the nature of the problem, they are more or less satis-

fied in many practical applications and, furthermore, a more sophisticated

model would require a detailed knowledge of the instrumentation involved.

Let us consider first the variance covariance matrix (Ai) of one
particular type of observation. Under the forestated assumptions

-5-



E -a.T -2a.T -n.a.T
i e l e i e i i

.T
e-aiTl I e-al e (ni-l)ai T

-2a.T -aoT -(ni-2)ai Te i e l 1 e

-n.a.T -(ni-l)ai T -(ni-2)a T ie i i e e i

(2.8)

2
where U . is the variance of that type of observation, ao the noise cutoff

frequencyland n. the total number of that type of observations. The total
.i

variance-covarlance matrix P then can be written in matrix form

A I 0 0 0

0 A 2 0 0
e

0 0 .0 . A
m

where m is the number of types of observations.

ance matrix is then:

A11 0 0 . 0

-I

0 A 2 0 . 0-i
P

(2.9)

The inverse of the covari-

(2.10)

(i = I, 2 .. m) can be obtained analyti-
1

• o . , • • • ° • • • •

-I
0 0 0 .A

m

in virtue of the partition theorem of matrix theory.

The inverse matrices A -I

cally by Z-transform methods.

-6-
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0 0 0 0 0
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-a .T
where K.= e m

i

The variance-covariance matrix of the orbit parameters is then

(2.11)

N = (_ij) (p)-I ( _/ij)T (2.12)

Thus the variance-covariance matrix (Eq. 2.5) must be modified

slightly to account for noise correlation, since now two additional elements

on each side of the elements of the main diagonal of p-I become different

from zero.

l i
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SECTION3

THEU , V PARAMETERS
--O --o

AND THEIR DIFFERENTIAL EXPRESSIONS

For satellites of all inclinations and eccentricities,

including zero in either case, the following set of parameters are

recommended for the two-body calculations: (see Figure 3.1):

a semi-major axis

U_o- unit vector directed to object from geocenter, at
epoch.

V - unit vector normal to U lying in the orbit plane and
--O --O'

in the direction of increasing anomaly.

e sin Eo_ where e denotes the eccentricity, and EO

e cos EoJ the eccentric anomaly at epoch.

These parameters avoid the singularities normally associated with

elements including argument of perigee and node, at zero eccentricity

and inclination respectively. Thus their use in describing the

differential properties of low eccentricity, equatorial satellites,

such as those proposed for communication relays, does not lead to

computational difficulties. Note that the apparent seven quantities

required to specify these parameters is reduced to the conventional

six by the normality of U and V .
--O --O

%,

-8-
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3.1 TRANSFORMATION EQUATIONS TO INITIAL POSITION AND VELOCITY

Initial position r_o and velocity _o are very closely associated

with these parameters, by the following formulae:

r = r U , where r
-'O O "-O O

= _ U + r _ V , where
"-O O -- O "-O

# = _ e sinE
O r o

o

rO = d_a (I -e 2)
o r

O

f_ E %

a _± - e cos j
O

The inverse transformation may be made with equal facility.

At a later (or earlier) time, the position and velocity may

be derived according to the following pattern. Note that these equations

have been developed to associate the coefficient e with quantities which

are indeterminate for circular motion, e.g. M, E, v and _. The quan-

tities (M - Mo) , (E Eo) , (v - Vo) , moreover, are well determined for

circular motion.

Given t and the parameters a, U_o, V_o, e sin Eo, and e cos E O

at time t , then:
O

M - M = n (t - t ), where n = k' _-_a -3/2
O O

For geocentric motion, k' = 0.074, 365, 74 and the mass function _is

normally unity. The quantity _ may be augmented where perturbing bodies

such as the moon affect the period of the satellites. Kepler's equation

is solved in the form:

(E E ) = (M - M ) + e cos E sin (E - E )
0 0 0 0

- e sin E [I - cos (E E ) ]
O O

-iO-
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Next e cos E and e sin E are developed:

e cos E = e cos E cos __(E-Eo) - e sin E
O O

and

e sin E = e cos E sin __(E-Eo) + e sin E
O O

2 )2 )2e = (e cos E + (e sin E
O O

p = a (l-e 2)

r = a (l-e cos E)

r = a (l-e cos E )
O O

and (V-Vo) is derived from

cos (V-Vo) = I - aPrr
O

[i - cos (E-Eo) ]

Finally

sin (V-Vo) - rr
O

[(M-Mo) - (E-Eo)

+ sin (E-Eo) ]

U = U cos (V-Vo) + V sin (v-v)-- "--0 _ 0

--V =-U__o sin CV-Vo)-_ + --oV cos __Cv-v O)

sin (E-E)
O

cos (E-E)
O

-ii-



and

r =rU

r_"= #U + r_ V, where

_" --_ e sin E
r

r

The inverse transformation can be developed by tracing this development

backwards, beginning with r and _ at time t.
m

3.2 DIFFERENTIAL EXPRESSIONS

Differential expressions yield cause-and-effect type of

relationships between the parameters and position or velocity, and are

indispensible for either error analysis or differential correction. They

are developed by differentiating the two-body representation formulae of

the previous section. Only the results are presented here:

Ar=U [R a A____aaa+ Rc A(e cos Eo) + R s A(e sin Eo)]

Am

+V [V a +V
-- a c

A(e sin E )a(e cos Eo) + V s o

+rv AU ]
"-0 --0

+ W [r sin (V-Vo) W • AV + r cos (V-Vo) W -AU ] (3.1)
.... "O

The coefficients R i and V i are given in Table 3.1 for general eccentricity.

For low eccentricity they simplify to the form:

w

-12-
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R = a
a

Rc = -a cos ++(v-vo)

Rs = a sin _+(v-vo)

3
V = - -- a ..(V-Vo_a 2

V = 2a sinc (V-Vo)

V = -2a [i - cos (V-Vo) ]S

i

%...¸
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TABLE3.1

COEFFICIENTSIN DIFFERENTIALEXPRESSION

FORPOSITION

2
3 a

R = r - -- (M - Mo) -- e sin Ea 2 r

2 r

R = a__. [i - cos (E - Eo) - _o_o ]c r a

2
a

R -
s r

[(M - M ) - (E - E ) + sin (E - E )]
o o o

2 2
3 a__ _i _ eV = - (Ma _ - Mo) r

2V - a sin

c QI e2r

V = a p+r

s _]I e 2 ar

(E - Eo) + ra (i rro ) e s£n Eo

[i - cos (E - Eo)] + r (I - r ) (i - e cos Eo) _
a r O J

L..

+

i

[
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The differential expression for velocity takes the form:

A__ = U_ [ (Ra _ _Va) _aa + (_c - _ Vc) A (e cos Eo )

+ (R - _ V ) A (e sin E ) - r _ V A U ]
S S O --O -'O

+ V [(Va + _- _a + (_ + __r Va) a c r Vc) A(e cos E )-- O

+ (V + r--V ) A(e sin E ) + _ V AU ]
s r s o -o -o

+W_ <[r + cos (v - Vo )
+ _ sin (v - Vo)]

- [r 9 sin (v - v ) - _ cos ( v - v )] W
O O --

w Av
-- --O

(3.2)

L

-15-
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Coefficients for arbitrary (<i) eccentricity appear in Table 3.2.
For nearly circular motion, these simplify to

= 0
a

= § sinc (v-vo)

s = _ cos (v-vo)

¢ = _!_
a 2

= S COS
(V-V0)

V = -_ sins (V-Vo)

where § is the tangential speed in the orbit.

Table 3.3 summarizes the differential expressions for position

and velocity, specialized to low eccentricity. The results are expessed

in local radial (_ component), tangential (_ component) and normal (W

component) form, thus facilitating their interpretation.

%_.

L

-16-
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TABLE 3.2

COEFFICIENTS IN DIFFERENTIAL EXPRESSION

FOR VELOCITY

_l = i _ 3
a 2 2

e (cos E- e)

3(_o_ ial PC " a

a 2

]
-- e sin Eo)sin (E Eo) + ar

J

P [ i - cos (E - Eo) ] + r (i - e cos Eo)a a

_a al 23 { 3 _ i e e sin E
+ _ (M - Mo)

_c_a(a)
3

2 r 2J
--i - e [ cos (E - E o) - e cos E (i - -- ) ]o ap

3

V = - e
S

- e sin E
o

[ - sin (E - E o) + e sin E

2
r__

(i- ap) ]

-17-



TABLE3.3

DIFFERENTIALEXPRESSIONSFORr and

SPECIALIZEDTOLOWECCENTRICITY

Ar

---in= U

a

[ Aa - cos A(e cos E ) + sin A(e sin E )]a (V-Vo) o (V-Vo) o

3 Aa + 2 sin (v-v) (e E )+v - _ (V-_o) a o A _o_ o

- 2 [I - COS (V-Vo) ] A (e sin Eo) + V_o

+w[_ (_-vo) w_._v+=o_ (v-_o) w. Au ]

Aa
U _ - sin A(e cos E )=-- (V-Vo) a (V-Vo) o

+ [2 - cos (V-Vo) ] A(e sin Eo) - V"-O

cos _(e cos Eo)

i Aa

+ ! 2 a + (V-Vo)

- sin (V-Vo) A (e sin Eo) _

-18-



3.3 DEVELOPMENTOF SCALARDIFFERENTIALEXPRESSIONS

The scalar differential expressions are developed here for range,
range rate, right ascension, and declination observations. The vector dif-
ferential expressions are given in Table 3.3, while the vector relationships
between geocenter, observer and satellite are shownin Figure 3.2. In this
analysis, the station coordinates are introduced through the R • U, R • _,
and R • W; the diurnal rotation of both earth and satellite make these
quantities constant in first order analyses.

Whererange measurementsare available, the determination of the
orbit parameters is governed by the differential relationship

7

L.

L..

=

pap= p. A_p= (rU + R) • Ap

Introducing the expression for Ap (or, equivalently, A[ since no station

errors A_ are considered in thi_present analysis) from Table 3.3, this

expression is given in Table 3.4. The station location enters through

scalar products with the orbit orientation vectors U, _, W. Since the

strength of the parameter determination depends upon the magnitude of the

coefficients, this relationship reveals how station location enters into

the determination. For example, an equatorial station leads to a zero value

for R • W, and consequently the orientation information conveyed in

aW • A_o and aW •A_o cannot be determined from range measurements on a

nearly equatorial satellite taken from equatorial sites.

The slant range rate differential expression may be developed

from p_ =_._; differentiating leads to

Substitution of Ap_ and A__ from Table 3.3, will lead to the desired expressions.

Alternatively, Table 3.4 may be time differentiated

d
pad=T[ (PAP) - hap

noting that, for the nearly circular orbit, % = n, _ = n_, etc. In addition,

for the nominal equatorial and circular satellite, _is a differential quantity

and pap leads to terms of second order; these are ignored at this state of the

analysis. Either route leads to the expression given in Table 3.5.

-19-
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Right ascension, _, and declination, 6 , differential expressions

are developed from

pac6cos & = A • a__p and pA6 = 2'A 

where the _ and D unit vectors are tangent to the celestial sphere at the

point towards which_p_is directed. A is parallel to the equator and D is

tangent to the celestial meridian, directed north, as shown in Figure 3.3.

_, _ and D form a right handed system.

The scalar products of _ and D with the U, _, W vectors appearing

in ap may be expressed in terms of R through the following relationships,

valid for the nominal equatorial satellite:

pcos 6 A U_:= - R • V_

p cos 6 A V = a +R. U

A .W=0
m

L-_

k--

p ctn _ D • _ = - (a + R • _)

p ctn 6 D • ! = - _ !

p ctn 6 D. W = pcsc6 R • W

Introducing these expressions into A • A_ and D.A_ leads to the scalar

differential expressions given in Table 3.6.

i

L

-20-
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TABLE3.4

SCALARDIFFERENTIALEXPRESSIONFORSLANTRANGE

!

3
pap = [(a ÷ R'U) - _ (V-Vo) R.V ] A a

+ [- (a + _R'U)_ cos (V-Vo) + 2R.V sin (V-Vo)] aa(e cos Eo )

+ [ (a + R.U) sin (V-Vo) - 2R.V (1-cos (v-v))] a a(e sin E )
.... O O

+ JR'V] aV- - --o AUo

+ [ R.W sin (V-Vo) ] aW. AVo

+ [ R.W=o_ (v-. o) ] aW"6_

I

w

|

L
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TABLE 3.5

SCALAR DIFFERENTIAL EXPRESSION FOR SLANT RANGE RATE

3
n = [- _ _R'V_] Aa

==

+ [ (a + R.U) sin (V-Vo) + 2R.V cos (V-Vo) ] a A(e cos E )-- m O

+ [ (a + R.U) cos (V-Vo) - 2 R.V sin (V-Vo) ] a A(e sin E )
.... O

+ [0] aV. AU
--O --'O

+ [R'W cos (V-Vo) ] aW- AV

+ [ -R.W sin (v-v o) ] aW. AU

f__

!

L

-24-
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TABLE 3.6

SCALAR DIFFERENTIAL EXPRESSIONS FOR

RIGHT ASCENSION AND DECLINATION MEASUREMENTS

3
( # cos 6) 2AS = [-_'! - _ (v-v o) (a + R-_) ] Am

+ [cos (V-Vo) R.V - 2 sin (v-v) (a + R.U) ] aA (e cos E )
-- -- O -- -- O

+ [-sin (V-Vo) R'V - 2 (1-cos (V-Vo)) (a + _R'U) ] a a(e sin Eo )

-7
_J

r'

_E

r

--=

p2 ctn

+ [a + R.U ] aV • AU
-- -- "-O "O

3
6 a 6 = [- (a + R'U) + _ (V-Vo) R-V ]Aa

+ [ cos (V-Vo) (a + ....R.U)-2 sin (V-Vo) R.V] aA(e cos Eo )

+ [ - sin (V-Vo) (a + _R'U) + 2 (1-cos (V-Vo)) _R'V_] a A(e sin Eo )

+ [-R'V] aV • AU
---O --O

+ [ sin (V-Vo) (# csc 6 - R.W) ] aW" AV

+ [ cos (v-v o) (p csc 6- R.W) ] aW. AU

_J
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SECTION 4

MISSION PARAMETERS

F

L--

E

C_

The parameters selected for the geostationary satellite tracking

analysis were derived from the _o, _o orbit parameters which are especially

suited for zero inclination and zero eccentricity orbits. The mission

parameters, chosen on the basis of their ease of interpretation with respect

to tracking accuracy, are:

North-south excursion, which reflects orbital inclination

errors,

East-west excursion, which reflects orbital eccentricity

errors,

East-west bias, which reflects errors in initial position-

ing in the orbit, and

2 °Time to drift out of a cone, which reflects errors in

the semi-major axis.

The uncertainty in the position of the satellite's position

in terms of the _o, V_o parameters has been established in Section 3,

Equation (3.1). The unit vectors _, _, W are so defined that U lies in

the equator plane and is directed from the geocenter to the satellite,

_, lies in the orbit plane, is perpendicular to U and is directed from the

geocenter in the direction of motion, and W completes the right 1_nd system

and is, therefore, perpendicular to the orbit plane. In the case of the

geostationary satellite W is directed toward the north pole, thus the

coefficient of W in equation (3.1) describes the north-south excursions:

NS = r sin (V-Vo) W • _V + r cos (V-Vo) W • _U-- --O -- -'O
(4.1)

-26-
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F

The coefficients of the vector _ embody the drift as well as the EW excur-

sions. The secular drift away from the design satellite point can be traced

to uncertainty in the period of the orbit and can, therefore, be expressed

in terms of uncertainty in the semi-major axis.

3 (M - Mo) a e2 f_a = -- VAD= -2 r a a

The EW excursions can be expressed as:

Aa (4.2)

A EW = V A(e cos Eo) + V A(e sin E )C S O
(4.3)

The remaining term in the V coefficient rV .AU , represents a bias in the
-- ' --O

east west direction, thus indicating an error in-_he original positioning of

the satellite.

Equations (4.1), (4.2), and (4.3) are of the form

_F _F

AF =--_ AA +-_ B AB, (4.4)

where equation (4.2) involves only one variable.

The variance of F can be computed in terms of the variances and

covariances of A and B in the familiar fashion:

(4.5)

where the partials of F with respect to A and B are evaluated from initial

conditions or computed at the point of interest. Similarly, equations (4.1),

(4.2) and (4.3) can be expressed as:

2 2 2 02 2 2 2

NS = r sin (v-v o) W_ • AV__o, + r cos (V_Vo)Ow_ - AU_o (4.6)

2 02
+ 2 r sin (V-Vo) cos (V-Vo) W • AV , W • AU

-- -'O -- --O
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02 9/4 (M 2 02D = - Mo) Aa (4.7)

2 = V 2 02 )+ V2 i°EW c A(e cos E s (e sin E )
o o

2VV o2-F c s (e cos E ), A(e sin E ) (4.8)
o o

Since the partial derivatives of the EW and NS excursions with

respect to the mission parameter are periodic functions, it has been decided

that the time average of these functions be used, for example,fT = 2

j =!sin 2 (v-v o) dv 2
o

and T = 2 Employing this averaging process

sin (v-v) cos (v-v o) dv = 0.o

o

equations (4.6) and (4.8 become:

2 i/2a2 I 2 ]
ONS = O • AV + (72 • AU (4.9)

--O -- --O

(TEW2 = 2 a2 I(72 A(e cos E )+ 3 (72 1A(e sin Eo) (4.10)o

The desired topocentric angles are, therefore,

-i OEW
e = tan
EW a - i

(4.11)

=

K-_

-i (TNS
eNS = tan a - I (4.12)

= .
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The time t (days) to drift out of a topocentric cone whose angle
at the earth's surface is _(radians) can be determined from (4.7)

3
OD= (a - i)_ = 3_t (TAa= _ (v - Vo)OAa

(a - I) (4.13)
t = 37T(TA a

The expressions in equations (4.11), (4.12), and (4.13), along with

the EW bias expression _o V • AU represent the desired mission parameters.
--O -'O

The o quantities in each of these are obtained through the matrix inversion

described in Section 2. The partials of the observations with respect to the

orbit parameters aa, A(e sin Eo ') A(e cos Eo) , V_o .AU o, _W • a_oV, and

W • AU , are computed analytically from the scalar differential expressions
--0

fcund in Section 3.

Y,,_.

r

L--

q...-
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SECTION5

BIAS ERRORS

L_

In addition to random errors in the observations, certain other

errors will affect the future positions of a geostationary satellite. These

errors are due to the uncertainties in the constants and parameters used in

the model. Some constants are used directly in the equations of motion, others

are associated with the observations. The velocity of propagation and station

coordinates are of the latter variety. These errors in the observed quantities

are biases as contrasted with the random errors in the measurements previously

considered.

The present section develops the partial derivatives of the observa-

tional quantities with respect to uncertainties in several constants. These

partial derivatives can then be used in two ways. One way is to determine the

effect on the observations and subsequently upon the mission parameters of an

unknown bias. In the case of biased constants in the equations of motion, it

is possible to predict the effect on the mission parameters directly.

The second use of the partial derivatives of observations with respect

to constants, is to adjoin these partials to the matrix of partials with respect

to the orbit parameters. It is then possible to solve for the amounts of the

bias in the same correction process used to find the errors in the orbital ele-
ments.

5.1 STATION COORDINATE ERRORS

The station vector R, from the observing station to the geocenter
can be written as

R = - x cos e I - x sin _ J - _vc K-- C -- C -- --
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where e= e + _ is the local sidereal time, a^_ is the sidereal time at

Greenwich,_ is the last longitude of the station, and _, _, and _ are unit

vectors along the x, y, and z axes, respectively. The stations meridian

plane coordinates Xc and Yc are

x : (C + H) cos
C

and

Yc = (S + H) sin qb

where

= 2 2 - 1/2C A a (I - e sin qS)
e

S _ (I - e 2) C

| ,

H is the height of the station above the reference spheroid

2 f2,e = 2f - where f is the flattening and e the eccentricity cf

the adopted reference spheroid,

is the geodetic latitude of the station

a is the equatorial radius of the Earth.
e

The fundamental relationships between the positions and velccities of the

observer, satellite and dynamical center are

£ =_+R

and

£ = r_"

New, considering only the effects of station location uncertainties on the

orbit,A_# can be set to zero and

and

Ar = - AR
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Consequently, the effects of the station location uncertainties cn the orbit can

be expressed as

Ar

Ax = cos esin ¢ [- (C + H) + e 2 C 3 cos2_ ] A_

+ cosecos _ AH

- x sin OAk
c

Ay = sin 0 sin _[-(C + H) + e 2 C 3 cos2_ ] A_

+ sin 0 cos CZ_H

+ x cos OAX
c

Az = cos _ [(S + H) + e 2 SC 2 sin2_ ]f_

+ sin @AH

aL

Ai = - @ sin 0 sin_5 [- (C + H) + e2C 3 cos2 4 ] A_

- 0 sin 0 cos _SAH

- x 0 cos 0AX
c

I

0 cos 0 sin (I) [- (C + H) + e2C 3 cos2_ ] f_

B

+ 0 cos 0 cos _ A H

- x 0 sin OAk
c

A_ = 0
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W

The propagation of these position and velocity uncertainties,

A _ and A_, to the adopted parameters follow by taking the dot products

of the foregoing differential expressions for _ and _ as expressed in

terms of the adopted parameters, with U, _, and W. Following this pro-

cedure,

ar

- • W = sin (V-Vo) W • AV + cos (v-v o) W AUa - - -o - -o

a r

" W = cos __(v-vo) W • AV - sin __(v-vo) W AU
S -- -- --O -- --O

R :

i

w

=

from which W

parameters,

AV and W • AU can be found. The effects on the remaining
--o - -o

A a , a(e cos Eo) , A(e sin E o) and V • AU follow from
a -o -o

ar aa
• U =- - cos (v-v) a(e cos E ) + sin (v-v) A(e sin E )

a -- a o o o o

A r 3 aa

- • V = -- ..(V-Vo_--a -- 2 a + 2 sin (V-Vo) a(e cos E )o

- 2 [I - cos (V-Vo) ] A(e sin Eo) + V "AU--o -o

A_ 3 Aa sin A(e cos E )
• u=_ (v-vo) a (V-Vo) o

+ [ 2 - cos (V-Vo) ] a(e sin Eo) - V "AU--o --o

Ar I Aa

- 2 a-- + COS (V-Vo) A(e cos Eo ) - sin (v-v o) a(e sin Eo )

=

=__
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The relationships between the uncertainties in the station

location and the observations may be obtained by means of the scalar

products _ A_, _ • Ap__, and D • A_ , where A_ =AR. These expressions

will be necessary if the matrix of partials is to be extended to include

the observation versus station location partials. This adjoining of

matrices is described in detail in Section 6.

Forming the above indicated vector products (refer to Section 3.3

for _, A, and _ definitions) yields the following expressions:

- =

L _

4

Ap L = Ap= (C + H) [L sin e- L cos_ ] (cos_A_E)
-- -- x y

_( 2 C 3 2
+ Lx cose+ L sine) (x c tan_ - e cos _ sin _)

Y

22 }- L (Yc cot_+ SC 2 e sin _cos _) A_
z

- cos _ (L X cos e+ L sin e + L tan_) AH ,
y z

Ap A = pAoccos 6 = (C + H) [ A sin 8- A cos _ ](cos_A)_ E )
-- -- x y

+ [ x tan _ C 3
2 2

- e cos __L_sin_][A x cose+ Ac y

- cos _ [A x cos e + A sin e] AH
Y

Ap . D =pA6 = (C + H) [ D sin e- D cos e ] (cos _A)_ E)
-- -- x y

tan C 3 2 2+ x c _- e cos _ sin_] [Dx cos _+ Dy

- Dz [Yc cot_5+ SC 2 e sin2_ ccs0] A_

- cos_ [D cose+ D sin e + D tan _ ] _H
x y z
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L.

The relationship between the slant range rate and the station

location uncertainties requires the range rate differential expression

of Section 3.3 where the differential expression for - _# is inserted

for A_assuming the orbit is to be uncorrected. The slant range rate

expression is then

2 'p A b = [-Xc tan¢ + C3e 2 sin¢cos _] [- cos8 (718 + i >Lx)

+ sin e(_e- y + _Ly)]

+ [Yc cote + SC2e 2 sin2¢ cos _] [- _ + _L z ]_ A¢

c " pLy)
+ os¢ [ - cos e(7]e+ x - pL x) + sin e(_e - # + ]

+ sin ¢[- _ + pLz_ ] ) AH

+ (C + H) (cos a(_8- # + _Ly) + sin 8(_]_+ _ - _Lx )

q- x
c ) (cosq5 AXE )

where _, _, _ are the components of _he topocentric vector, _, directed

from the observer to the object and eis the rotational rate of the Earth.

The quantities _ # _ are the components of the vector _, representing the

satellite's velocity with respect to the dynamical center. After a

definitive orbit has been established, these quantities are available

as a function of time.

_J
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5.2 UNCERTAINTY IN GRAVITATIONAL AND CELESTIAL CONSTANTS

The gravitational and celestial constants are used in the orbit

computations to predict the motion of the satellite. This motion is con-

trolled mainly by the gravitational field of the earth, but is perturbed

by the attraction of the Sun and Moon. While it is true that the total

perturbations are important, it will be shown that the uncertainty in

the magnitudes of the perturbations are negligible because of the probable

errors in J2, the coefficient of the second harmonic of the geopotential,

mE , the mass of the Moon, and the mass of the Sun.m(_,

There remains the uncertainty in the fundamental constant of the

geopotential, which is best expressed in terms of the mass and equatorial

radius of the Earth. That constant is k the Gaussian gravitational con-
stant in Earth units, e'

A set of elements more closely associated with the familiar a, e,

i, and M o than the _o, _o parameters, and which still avoids the low

eccentricity and low inclination singularities inherent in the former set,

is used in the evaluation of effects of the uncertainties in J2' m_ , and

m®. In this set, the mean anomaly M is replaced by the mean longitude L
(L =_ + M =_ +_+ M). Also, e and_are replaced by e cos _ and e sin _,

a combination of the eccentricity and perigee location which eliminates

the low eccentricity problem inherent in _ By using as parameters the

equatorial plane components of the unit vector normal to the orbit plane,

that is W = sin i sin _ and Wy = - sin i cos _ , a combination of i and
becomes a_ailable for which the secular perturbation variations reduce to

zero for the geostationary satellite. The set of derived parameters

applicable to a general perturbations' evaluation of the geostationary

satellite orbit, is listed in Table 5.1.

TABLE 5.1

SELECTED PARAMETERS

a

W
X

W
Y

= sin i sin

= - sin i cos

semi-major axis

i = inclination

= longitude of ascending node

e cos _e sin_

L

e = eccentricity

= _+ _ = longitude of perigee

L = _ + M = orbital mean longitude
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5.2. i THE CONSTANT OF GRAVITATION

To evaluate the effects of the uncertainty in the gravitational

constant, it is well to consider the practical method of determining and

thereafter predicting the orbit.

If the orbit were determined from angular observations only, the

size of the orbit in laboratory units of length would not be directly ob-

tained, but would be inferred from the model which includes the constant

under discussion. An error in ke_ the gravitational constant, which is used

in both the correction and the prediction formulas, will not effect the

orbital elements, if the semi-major axis is expressed in earth radii.

Even when the determination of the orbit depends heavily on slant

range measurements, the period will be the most accurately determined

quantity after a few days and can, therefore, be adjusted to equal 24

sidereal hours. The period is related to the semi-major axis by

2 na 3/2 a 2 2

P - ke _ - [ i - 3J 2 (_) ÷ 0 (J2) ]

The second term shows that this mean sidereal period is decreased by the

equatorial bulge by 75 parts per million or 615 seconds. The semi-major

axis must be increased by 50 parts per million or 2.1 km to compensate.

An error in the gravitational constant will appear as a seeming

systematic error in slant range because an adjustment in the semi-major

axis would again compensate the period. Thus the resulting scale error is

proportional to

Ak
Aa 2 e

a 3 k
e

The slant range,p , to the satellite from a station at a great circle dis-

tance,_ , from the subsatellite point is determined by

2 2
p = I + a - 2apcos

Therefore pap = aa (a - cos_)

and _ 2a (a - cos_ )
k - 3pk

e e
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Under the assumption that the satellite will be corrected to have

no drift, the range-rate should always be zero and, therefore, no partials

of this observation with respect to variations in the constants can exist.

The distance of the observer from the center of gravity is not

affected by the scale error (Figure 5.1). Thus, there will be an error in

the elevation angle, h.

a

Obse

Geocenter

FIGURE 5.1 EFFECT OF SCALE ERROR ON ELEVATION ANGLE

Applying the law of sines to Figure 5.1

Lz a _ I _ p
cos h cos (h+_) sin

a (cos _ cos h - sin _ sin h ) = cos h

1
cos _ - sin _ tan h = --

a
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From which we derive

A k

a sin_ Ah - A a _- 2 e
2 a 3 k

cos h e

Therefore

or

A k A k
2 e cos h _ 2 e a sin

Ah = _ k p 3 k 2
e e p

_h = 2 a sin_

_k e 3 k p2
e

which, of course, shows that the angular position with respect to the

subsatellite point (_= 0) is unchanged. The elevation angle at a

station 71 ° away is only in doubt by ! 0.I seconds of arc because of

the uncertainty in k e (6 parts per million). This would be difficult

to detect even with optical instruments.

The error in slant range, however, can be detected at nominal

accuracy. The uncertainty in k e causes an uncertainty of 150 meters in

the slant range to a station 71 ° away.

The azimuth of the satellite is not affected hy a scale error.

5.2.2 THE SECOND HARMONIC OF THE GEOPOTENTIAL

It is well hnown from general perturbations theory that a,e,

and i have no secular variations due to J2; _, _ and M do have secular
variations_l) *

Consider now the secular effects on the adopted parameters.

The perturbative time variation is denoted by the grave (_) symbol.

There are no secular parts in

(e cos _) = - e _ sin _ + e cos

and

(e sin ?r = e?r cos_ + e sin ?r

*Numbers in parentheses denote references in Reference Section.
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since the first terms have e (=0) coefficients and cos _ and sin_ do

not combine with any of the terms in the general perturbations expan-

sion of e to yield secular terms. Similarly, the secular portions of

and

\ \ \ \
W = _sin i cos_ + i cos i sin
x

\ \ \
W = _ sin i sin _ - i cos i cos
Y

are zero for the geostationary satellite due to the sin i (=0) coefficients

in the first terms which also appear in the expansion for i. The secular

perturbation in the remaining element, L, reduces to

L=3 n J2

for the geostationary satellite orbit. Thus

A L = 3 n A J2"

A representative value for the probable error in J2 is a J2 = ! 0.3 x 10 -6.

Then, with a = 6.611 radii and n = 15°/hr, the uncertainty in the predicted

mean longitude could be

\ + 10-6/dayAL = -- 7_2 x

which represents a displacement of ! 0.34 x 10 -2 miles/day along the orbit.

It would require 760 years for this uncertainty to amount to 2° .

This differential secular term, due to the uncertainty in J2'

acts like an uncertainty in the period and thus is indistinguishable there-

from. Moreover, none of the even harmonics can be distinguished from the

fundamental in their secular effects on a geostationary orbit.

F

5.2.3 UNCERTAINTY IN THE MASS OF THE MOON AND THE SUN

General perturbations theory reveals that the attraction of the

Moon (and Sun) on an Earth satellite will have a secular effect on only

,_, andX.(1),(2)_rw \the geOw_tyationary satellite, the secular portionsof (e cos , (e sin_ , "'x' and are again zero, and the secular variation

in L reduces to 2

\ n
L = m (I 3 sin 2

n _ _ i_
).
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The mass of the Moon, in terms of the Earth's mass, is

i
m_=81.35 + 0.05

= 0.012 2925 + 0.000 0075

2_ o

By taking n = 15°/hr, n_ = 27.32 days ' and _ = 18.3, the uncertainty in

\ -6/day -2L is + 3.08 x I0 or a + 0o14 x i0 miles/day displacement along the

orbit. This effect amounts to nearly half that due to the uncertainty in J2"

This secular effect cannot be used to obtain an improvement in the

lunar mass, not only because of its small size, but, again, because of con-

fusion with the effects of the geopotential. There is some hope, however,

of detecting monthly or semi-monthly variations in positions due to this

source of error. The total effect on an error in the Moon's mass, however,

will not significantly effect the tracking of a geostationary satellite.

The effects of an error in the Sun's mass are even smaller than

those of the Moon's mass.

i

i

r

i- •

5.3 REFRACTION

The principal effect of atmospheric refraction on an electro-

magnetic wave passing through the air is a slight deviation of the ray

path from a straight line. As the various portions of the wave front en-

counter atmospheric regions of different refractive index, their velocities

will be increased or decreased relative to other portions such that the

ray path bends toward regions of higher index and away from regions of

lower index. In the case of missile and satellite tracking, the path of

an electromagnetic signal from the vehicle generally bends downward on its

way to an observing station on the ground, and as a result the apparent

elevation angle is somewhat greater than would be observed in the absence

of an atmosphere. Also, a range error will exist since the velocity of the

wave in the atmosphere will differ from the velocity in a vacuum. Because

the ray path through the atmosphere, to a target of a given altitude, is

longer at low elevation angles than at high angles, refraction errors both in

in angle and range will increase as the elevation angle is decreased.

-41-



3 _7

5.3.1 TOTAL BENDING AND REFRACTION CORRECTIONS

OF THE ELEVATION ANGLE

The basic integral formula for total ray-bending in a spherical

stratified atmosphere can be accurately evaluated by approximating the re-

fractivity profile by a series of straight-line segments, computing the

bending due to each of the corresponding spherical shells, and then adding

the results to obtain the total bending. The simplest sufficiently accurate

formulation is that presented by Weisbrod and Anderson (3) Let

R = mean radius of Earth

H = height of the station above mean sea level
o

H = height of the target above mean sea level
z

Hk = selected height values below ionosphere

H. = selected height values in ionosphere
J

n = atmospheric index of refraction at altitude h above mean

sea level

N = (n - i) x 106 = the refractivity

N = refractivity at the target height H
Z g

N
s

= refractivity at the observation station

N k = refractivity at Hk

N. = refractivity at H
J J

h = apparent elevation angle
O

h = true elevation angle = h _ Ah 0< L_h.

If the refractivity profile, i.e., the function N (h), is not known from

meteorological data, it may be approximated from the world-wide charts of
Bean and Horn (4) .

I

i -
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The altitude Hz of the target above meansea level must be known
or fairly well estimated (! 2 percent). Then:

a o Select a series of significant altitudes HI, H2, H3, H4, .... ,

H such that between each consecutive pair (_ Hk 1)Z' ' +

the refractivity profile is well approximated by a straight

line. Usually, a number of height-levels between 50 to 60

will suffice for the total atmospheric height encountered in

missile and satellite work, since this will yield sufficient

accuracy while at the same time retaining the effects of the

relatively finer structure of the atmospheric (and in particu-

lar, ionospheric) variations.

b ° For each height Hk (k _ L I _ Z) existing below the iono-

sphere, tabulate the refractivity Nk and the value tan _k'
where

COS _ =

cos h
O

[ I+H]/(R+Ho) ] i- (Ns-Nk) x I0-6 ]

L I

k_-l

Co If the operating frequency does not exceed 1,000 mc, and

since the target is in or above the ionosphere, then iono-

spheric refraction must also be considered. In this case,

for each significant height Hj (L2 _ j _ Z) in the iono-

sphere, tabulate the corresponding N. and the value tan __j
where J

cos _j =

cos h
O

l+Hj/ (R+Ho) ] l-(Ns-Nj)xl0-6

d. The total bending of the ray is given by

Z

Nk+ I -Nk I Nj+I I - IN'j I

500(tan_k+ I + tan_k) + I 500 (tan_j÷ 1 + tan _j)

j=12

where the constants are chosen to yield _/ in nilliradians.
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e ° The refraction error ah (radians) in the apparent

elevation angle h may be computed by the formula:
o

Ah =

lO-3_y + 10 -6
(N z - Ns)Y 1

i (tan ho) Y2

where

4

YI = I c.3 (2j - I) X 2j-I

j = I

Y2 = YI + i0-6 (Ns - Nz )

4

Y
j =i

c. (2j-l) 2 X 2j-I
J

[_ j

i

R+H
O

X - cos h
R+H o

z

and

c I = I

c 2 = 1/6

c 3 = 3/40

c 4 = 5/112

The derivation of these last expressions is given in Aeronutronic

Report U-954(5).

5.3.2 REFRACTION CORRECTIONS OF _, b

The effect of refraction on _ and 6 follows from

L = A A_cos 6 + D A6 = A AA cos h + D ah
-- --0 O --0 --0 O ---O
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E

where ZIA = 0. A and D
--O --O

described in Section 3.3.

are the reference values of the _, A, D triad

Thus

A • D

As- --o --o Ah
cos 6

O

and

n6= D ._ Ah
--O "-O

The apparent elevation angle h° and azimuth Ao, required for the components
of D are found from

"-O

sin h = sin _ sin 6 + cos _ cos 6 cos 0c
O O O O

cos h cos A = - cos _ sin 6 + sin _ cos 6 cos n °O O O O

sin h sin A -- cos 6 sin 0c°
O O O

h is computed as outlined in Section 5.3.1.

are then

and

oc = C_ + f_c_
O

6=6 +A6
O

The true values of _and 6

5.3.3 REFRACTION CORRECTIONS FOR RANGE

The correction to the range # due to refraction is, in meters,

L 1

Ap --I

k = I

(Nk+l+ Nk) (Hk+ I- _c)

I000 (sin _k+l + sin _k )

Z

j=L 2

(IN.i+ll+IN1 I)(Hi+ I-H j)

I000 (sin _j+l +sin _j)

The heights H are in kilometers.
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Uncertainties in the elevation angle and range correction ex-

pressions for atmospheric and ionospheric refraction are presented here

by means of analyses based on calculatiGns for the I000 mc frequency

range. These calculations considered the effects of the step size used

in the finite-summation approximation both through the troposphere and

the ionosphere, the approximation of the shape of the ionospheric layers,

and the variation in the heights of these layers. The magnitude of these
individual effects are found summarized in Aeronutronic Publication U-954 (5)

Figure 5.2 shows the standard deviation of angular error for the

i000 mc. frequency. Curves are shown for the low elevation angles down to

!°, which yields the greatest standard deviation.

The range uncertainty is presented in Figure 5.3 for various

target heights. The maximum target height shown is I000 n. mi., which

for all practical purposes encompasses all of the refractive effects of the

atmosphere and ionosphere. Thus this upper curve may be applied to the

geostationary satellite orbit.

5.4 UNCERTAINTY IN THE VELOCITY OF PROPAGATION

An error in the velocity of light will be reflected in a pro-

portional error in the slant range and range-rate observations. Since

the nominal value of range-rate is zero, the error in the velocity of

light will cause only a small relative error in a small discrepancy.

Therefore, the only detectable effect will be on the slant range.

Since the range quantity is obtained from a time lag measure-

ment multiplied by the velocity of propagation, that is

p = c (tfina I - tinitia I)

then

_p= Ac (tfina I - tinitial)
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giving the functional relationship

If we assume a probable error of _ 0.3 km/sec in the velocity

of propagation, there will be a corresponding probable error of ! 41 meters

in the slant range from a station 71 ° away from the subsatellite point to

the satellite. This error is always proportional to range. At the sub-

satellite point, the probable error in slant range is ! 36 meters.
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SECTION 6

TREATMENT OF BIAS ERRORS

i

Generally every effort is made to correct for all predictable

and measurable errors by means of precalibration of the tracking systems

and by such standard corrective procedures as the corrections for velo-

city of propagation. Still the need exists to incorporate in the orbit

determination methods means of treating systematic or bias errors in the

tracking data, specifically (a) uncertainties in the tracking stations'

location; (b) uncertainties in the gravitational and celestial constants

used to describe the earth, the moon and the sun; (c) velocity of pro-

pagation and atmospheric refraction. The calibration of the tracking

instruments is also subject to systematic errors, and biases are caused

by mechanical factors, such as misa]ignments and deformations in the radar

mounts.

6.1 EFFECT OF BIAS ERRORS ON DIFFERENTIAL CORRECTION

The differential correction procedure of orbit determinaticn

in its classical form assumes the observations' residuals to be normally

distributed and unbiased. In order to estimate systematic errors, it is

natural to accept the hypothesis of unbiased residuals and iteratively

determine the six orbit parameters by means of the differential correction

method. The residuals obtained from the last iteration are then statistically

tested to reveal the presence of bias terms or low period correlation. If

the hypothesis of unbias and statistical independence of the residuals is

rejected at a high confidence level, one must conclude that one or more

significant sources of systematic errors are present in the tracking network.

L_
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The structure of the residuals will usually indicate what sources of bias

are more likely to have caused the non-random behavior of the residuals.

In this first approach, relationships between various types of bias errors

and orbit parameters are obtained in order to evaluate the effects of

various sources of systematic errors. The magnitude of the errors can be

derived from "a priori" knowledge or can be estimated from the observations'

residuals.

6.2 ERROR ANALYSIS FOR A SIX PARAMETER DIFFERENTIAL CORRECTION

Let us review briefly the basic principles of the differential

correction procedure. The differential relations between the 6-column

= .. ) of the orbit parameters and the m-column
vector, X ( Xl' x2' '' x6" of the observations can be expressed in
vector, 0 ( oi, 02, , Om)
matrix form as

A0=FAx

where _= [ _ij ] is a m x 6 matrix, whose generic element is

_0.
i

vij-
J

(6.1)

The likelihood functional, in the case of Gaussian noise, is the weighted

sum of the squares and crossproducts of the residuals:

(A0 -FAX) T P-I (A0 - FAX) = Min. (6.2)

where P is the covariance matrix of the observations'residuals and reduces

to a diagonal matrix when the observations are linearly independent. The

set of normal equations which results from the minimization of the functional

(6.2) can be expressed in matrix form as:

let

T -i FT -IF P FAX = P A0 (6.3)

N= FT p-IF.
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The inverse of this matrix, N -1, can be shown to be the covariance matrix

of the orbit parameters' corrections

N -I = AX T AX

In order to investigate the effects of bias errors on the orbit parameters,

let us define as r-column vector, Y (= YI' Y2 .... , Yr) representative of all

systematic errors in stations location, celestial and gravitational constants,

of propagation, etc. Let us also define the r x m matrix A = [_ij ]velocity

whose generic element is defined as

i
06

ij _yj

The differential relations between observations and biases can then be ex-

pressed in matrix form as

A0 = AAY (6.4)

Then, if one were to ignore the presence of biases and adopt a six parameter

differential correction procedure, the following systematic errors, aXb,

would be introduced in the six orbit parameters by the bias terms:

AX b = N-I rT p-i A AY (6.5)

All the matrices appearing on the right side of this expression, with the

exception of matrix A, are immediately available in the program already

developed for statistical studies, as it can be noticed by comparing

equations (6.5) and (6.3).

Analytical expressions relating the various types of bias errors and

the observations such as those derived in Section 5.1 make up the A matrix

elements.
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6.3 ESTIMATION OF BIAS ERRORS BY DIFFERENTIAL CORRECTION

The differential correction method can be generalized to take into

consideration biases and estimate them together with the orbit parameters.

One can form the (r + 6) x m matrix r l,bY joining the two matrices r and A:

rI= IriAI

and indicate by A X I the column vector of the orbit parameters and bias errors

AX I =

x 1

x 6

Yl

Yr

t Then one can write in matrix form:

[ A0 = rl AXI (6.6)

i

%.--

f-_ T

=

i

i
&..--

The likelihood of the sample can then be maximized both with respect to the

orbit parameters' corrections and the bias errors, obtaining

AXI = Ni I r TI p-i A0 (6.7)

where

N 1 = FTI p-I F 1 (6.8)
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